

Product/Process Design Using

Horizontally Structured Modeling

<u>and</u>

<u>Virtual Machining</u>

Agenda

Introduction

- Product Design Applications
- Manufacturing Applications
- Further CAD/CAM Developments

Agenda

Introduction

- Product Design Applications
- Manufacturing Applications
- Further CAD/CAM Developments

Feature Dependencies

Product Design Applications

Traditional Feature Modeling Process

Documented in Software Training
Materials and Presentations

Definition of Feature Dependency

A Relationship Between Features that Defines its Placement and Position to Other Features

Structural Features are Not Independent

Method:

Create/Position Features on features

Limitations:

- Parent/Child Feature Dependencies
- Can NOT <u>independently</u> reorder, suppress or Delete features

Vertical Feature Modeling Demo

Vertically Structured CAD Model

Recommended by Commercial CAD/CAM Vendors

Product "Casting" Change Demo Example

Function

Demonstration of **UNDESIRED** results when editing a vertically structured model.

Scenario:

Product engineering has determined that the extra RIB material is no longer needed and must be removed.

DELETE RIB FEATURE

RESULTS

RESULTS

zc

TOP WORK

Horizontally Structured CAD/CAM Modeling

Delphi Methodology

- All features are placed on and positioned to datums
- ONLY Parent child relationship between features and datums

Benefits

- Enables easy feature manipulation
- Reorder features, remove features, add features

Horizontally - Structured Modeling Demo

Horizontally Structured CAD Model

Process
Developed by

Product "Casting" Change Demo Example

Function

Demonstration of **DESIRED** results when editing a horizontally structured model.

Scenario:

Product engineering has determined that the extra RIB material is no longer needed and must be removed.

Product Implementation Benefits

Product Design Activity
CAD Operator Functions

Productivity Improvement
Delphi Methodology

Total CAD Operators ~70

Create Models 20% 50% reduction

Detail Drawings 30% ---

Edit Models 50% > 90% reduction

- Increased Productivity
- Reduced Cost
- In-Sourced Work

<u>Agenda</u>

Introduction

- Product Design Applications
- Manufacturing Applications
- Further CAD/CAM Developments

HISTORY of the Process Sheet:

- 1. 2D CAD/CAM or Manual
- 2. Non Associative Models
- 3. Associative In-Process Models

Manufacturing Engineering Integrated CAD/CAM Implementation

Previous Process (1)

Prior to 3D CAD/CAM

Product

3D CAD/CAM SOLID MODEL

Manufacturing

RE-CREATE GEOMETRY (2D CAD/CAM)

MANUFACTURING PROCESS SHEETS

- Process Sheets work is done outside in 2D CAD/CAM
 - 3D CAD/CAM Costly
 - Complex to learn/use
 - Resulted in loss of data integrity

Manufacturing Engineering Integrated CAD/CAM Implementation

First 3D CAD/CAM Process (2)

Product

3D CAD/CAM SOLID MODEL

Manufacturing

3D CAD/CAM SEPARATE SOLID MODELS (Not linked)

MANUFACTURING PROCESS SHEETS

- Process Sheet work in 3D CAD/CAM
 - Complex to learn/use
 - Cost disadvantage to Delphi
 - Redundant model creation
- Offered no real advantage
- Alternative method sought

Manufacturing Engineering Integrated CAD/CAM Implementation

New 3D CAD/CAM Process (3) - Virtual Machining

Product

3D CAD/CAM PRODUCT MODEL

MANUFACTURING PROCESS SHEETS

BENEFITS

- Maintain Data Integrity
- Reduced Annual Design Costs 50%
- Reduced Lead Time
- Control of Electronic Data

STATUS

- Implemented at all US Locations
- Implementing at Global Locations

Traditional 3D Process Modeling (2)

Ex: Multiple Files and Non Associative Solid In-Process Models

Manufacturing Process Modeling

Product Casting Model

Operation 10.1
Create Model

Operation 10.2 Create Model

Operation 20.1,etc Create Model

MPSS Program
Print Process Sheets

<u>Virtual Machining (3)- (requires horizontal modeling)</u>

Ex: Single File with Associative Solid In-Process Models

Virtual In-Process Models OP10.1,OP10.2,etc

Create Process Sheets

Product Casting Model

Master Process Model

*Horizontally Structured Features

*Contains features for all Operations

- * Features Assigned to Operations
- * Drag 'N Drop Functionality to reassign Features

Virtual Manufacturing Process Modeling Demo

Virtual Machining Process Modeling

Developed by

Manufacturing Change Demo Example

PART 1

Demonstration of how product model changes update the manufacturing process models and process sheets.

Scenario:

The size of the Casting BOSS changes.

What is a Process Sheet?

A QS9000 required set of process documentation depicting either a part being machined or assembled. This information is displayed on the manufacturing line for the operators reference.

Product Casting.prt

Production CASTING Change

Virtual Machining Process Modeling

Developed by

Manufacturing Change Demo Example

PART 2

Demonstration of how process changes update ALL process models and process sheets.

Scenario:

A HOLE that is currently located in Operation 60 now needs to be machined in Operation 20.

MASTER Change UPDATES ALL Process Models and Process Sheets

Virtual Machining Comparison

Process Sheet Creation Time for EPS Epsilon Housing Machining

Savings for revisions in line with horizontal modeling

Agenda

Introduction

- Product Design Applications
- Manufacturing Applications
- Further CAD/CAM Developments

Further CAD/CAM Development (Work progressing at Delphi)

AUTOMATED / KBE PROCESS PLANNING

*Automated Machining Process Design

> NC/CMM TOOL PATH GENERATION

*Automated Machining
Process Design

METAL REMOVAL PROCESS SIMULATION

MASTER
MODEL
(PRODUCT &
PROCESS)

MANUFACTURING PROCESS DOCUMENTATION

* Horizontally Structured Modeling for Charted Parts /Alternate Operations

*Virtual Concurrent Product/Process

AUTOMATED MATH BASED TOOL DESIGN

*Virtual Fixture/Tooling Design

RAPID TOOLING FABRICATION

ASSEMBLY MOCKUP / SIMULATION

ANALYSIS